Механические свойства металлов. Лекции по ткм Механические способности

Механические свойства оценивают способность материала сопротивляться механическим нагрузкам, характеризуют работоспособность изделий.

Механическими называются свойства, которые определяются при испытаниях под действием внешних нагрузок - результатом этих испытаний являются количественные характеристики механических свойств. Механические свойства характеризуют поведение материала под действием напряжений (приводящих к деформации и разрушению), действующих как в процессе изготовления изделий (литье, сварка, обработка давлением и др.), так и при эксплуатации.

Стандартные характеристики механических свойств определяют в лабораторных условиях на образцах стандартных размеров посредством создания необратимой пластической деформации или разрушения образцов. Испытания проводят в условиях воздействия внешних нагрузок: растяжение, сжатие, кручение, удар; в условиях знакопеременных и изнашивающих нагрузок. Значения полученных характеристик обычно приводятся в справочниках.

Примером могут служить характеристики:

Сопротивление разрушению, оцениваемое пределом прочности, или временным сопротивлением - это максимальная удельная нагрузка (напряжение), которую выдерживает материал до разрушения при его растяжении;

Сопротивление пластической деформации, оцениваемое пределом текучести - это напряжение, при котором начинается пластическая деформация материала при растяжении;

Сопротивление упругим деформациям, оцениваемое пределом упругости - это напряжение, выше которого материал приобретает остаточные деформации;

Способность выдерживать пластические деформации, оцениваемые относительным удлинением образца при растяжении и относительным сужением его поперечного сечения;

Способность сопротивляться динамическим нагрузкам, оцениваемая ударной вязкостью;

Твердость, оцениваемая сопротивлением материала проникновению индентора (эталонного образца).

Механические свойства материалов определяют в статических и динамических условиях нагружения.

Эластичность характеризует упругие свойства полимера, способность материала к большим обратимым изменениям формы при малых нагрузках из-за колебания звеньев и способности макромолекул изгибаться.

К статическим испытаниям относятся также испытания на сжатие, кручение, изгиб и другие виды нагружения.

Общим недостатком статических методов определения физико-механических свойств материалов является необходимость разрушения образца, что исключает возможность дальнейшего использования детали по прямому назначению в результате вырезки из нее образца для испытания.

Определение твердости . Это метод неразрушающего контроля механических свойств материала при статической нагрузке. Твердость оценивают главным образом у металлов, так как для большинства неметаллических материалов твердость не является свойством, определяющим их работоспособность.

Твердость оценивают по сопротивлению материала проникновению в него при статической нагрузке инородного тела правильной геометрической формы, имеющего эталонную твердость (рис. 14).

Рис. 14 Определение твердости материалов: а - схема нагружения; б - измерение твердости по Бриннелю ; в - измерение твердости по Виккерсу

Вдавливание эталонного образца в испытуемый образец выполняется на специальных приборах, из которых чаще применяют приборы Бриннеля, Роквелла, Виккерса.

Метод Бриннеля является наиболее распространенным - в образец вдавливают шарик из закаленной стали. Диаметр отпечатка d отп измеряют с помощью лупы со шкалой. Далее по таблицам находят твердость материала. В испытаниях по методу Виккерса используется алмазный резец, а по методу Роквелла - алмазный конус.

Люминесценция (флюоресценция и фосфоресценция) - эффекты свечения при поглощении энергии падающего света, механического воздействия, химических реакций или тепла.

Оптические свойства веществ имеют огромное прикладное значение. Преломление света используется для изготовления линз оптических приборов, отражение - теплоизоляция: подбором соответствующих покрытий можно влиять на свойства материалов с целью поглощения или отражения теплового излучения, но пропуская видимый свет. Оконные стекла имеют характерный цвет для кондиционирования.

Широко применяются самоокрашивающиеся очки-хамелеоны, флюоресцирующие светильники и экраны осциллографов. Используются металлические покрытия (анодированный алюминий) для декоративных целей (значение имеет отражательная способность материала), прецизионные зеркала металлизированных поверхностей.

Декоративные свойства материалов определяются их внешним видом и зависят от их наружного рисунка, дизайна, текстуры, структуры, способа обработки поверхности, от наличия покрытий и рельефов.

Биологические свойства материалов определяются:

Их воздействием на окружающую среду, степенью их токсичности для живых организмов;

Их пригодностью для существования и развития каких-либо организмов (грибков, насекомых, плесени и пр.).

Механические свойства характеризуют способность металлов и сплавов сопротивляться действию приложенных к ним нагрузок, а механические характеристики выражают эти свойства количественно. Основными свойствами металлических материалов являются; прочность, пластичность (или вязкость), твердость, ударная вязкость, износоустойчивость, ползучесть и др.
Механические характеристики материалов определяются при механических испытаниях, которые в зависимости от характера действия нагрузки во времени делятся на статические, динамические и повторно-переменные.
В зависимости от способа приложения внешних сил (нагрузок) различают испытания на растяжение, сжатие, изгиб, кручение, ударный изгиб и т. п.
Основные механические характеристики металлов и сплавов.
Временное сопротивление (предел прочности, предел прочности при растяжении- условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.
Истинное сопротивление разрыву (действительное напряжение) - напряжение, определяемое отношением нагрузки в момент разрыва к площади поперечного сечения образца в месте разрыва.
Предел текучести (физический) - наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.
Предел текучести (условный) - напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении указанной характеристики. Предел пропорциональности (условный)- напряжение, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации (в рассматриваемой точке), с осью нагрузок увеличивается на 50% своего значения на линейном упругом участке. Допускается увеличение тангенса угла наклона на 10 или 25%.
Предел упругости- условное напряжение, соответствующее появлению остаточной деформации. Допускается определение предела упругости с допусками до 0,005%, тогда соответственно будет обозначаться.
Относительное удлинение после разрыва- отношение приращения длины образца после разрыва к его первоначальной расчетной длине. Различают относительные удлинения, полученные при испытании на образцах с пятикратным и десятикратным отношением длины к диаметру. Допускаются и другие отношения, например 2,5, при испытании отливок.
Относительное сужение после разрыва - отношение площади поперечного сечения образца в месте разрыва к начальной площади его поперечного сечения.
Указанные характеристики механических свойств определяются при испытании материалов на растяжение по методам, изложенным в ГОСТ 1497-61, на цилиндрических и плоских образцах, формы и размеры которых установлены тем же стандартом. Испытания на растяжение при повышенных температурах (до 1200°С) установлены ГОСТ 9651-73, на дли-тельную прочность- ГОСТ 10145-62.
Модуль нормальной упругости- отношение напряжения к соответствующему ему относительному удлинению при растяжении (сжатии) в пределах упругих деформаций (закон Гука).
Ударная вязкость- механическая характеристика вязкости металла - определяется работой, расходуемой для ударного излома на маятниковом копре образца данного типа и отнесенной к рабочей площади поперечного сечения образца в месте надреза. Испытания при нормальной температуре проводятся по ГОСТ 9454-60, при пониженных - по ГОСТ 9455-60 и при повышенных - по ГОСТ 9656-61.
Предел выносливости (усталости) -максимальное напряжение, при котором материалы образца выдерживают без разрушения заданное количество симметричных циклов (от +Р до - Р), принимаемое за базу. Количество циклов задается техническими условиями и представляет большое число. Методы испытания металлов на выносливость регламентируются по ГОСТ 2860-65.
Предел прочности при сжатии - отношение разрушающей нагрузки к площади поперечного сечения образца до испытания.
Условный предел ползучести- напряжение, вызывающее заданное удлинение образца (суммарное или остаточное) за установленный промежуток времени при заданной температуре.
Твердость по Бринелю - определяется на твердомере ТШ путем вдавливания стального закаленного шарика р. испытуемый металл или сплав.
Твердость по Роквеллу HRA, HRB и HRC определяется вдавливанием в металл стального шарика диаметром ~ 1,6мм или конуса.(алмазно или твердосплавного) с утлом при вершине 120° на твердомере ТК. В зависимости от условий определения, которые стандартизованы ГОСТ 9013-68, различают три значения HR: HRA - для очень твердых материалов (шкала А) - испытание производится вдавливанием алмазного конуса; HRB - для мягкой стали (шкала В) - стального шарика; HRC - для закаленной стали (шкала С) - твердосплавного или алмазного конуса.
Глубина проникновения алмазного конуса при испытаниях в металле небольшая, что позволяет испытывать более тонкие изделия, чем при определении твердости по Бринелю, Твердость но Роквеллу является условной характеристикой, значение которой отсчитывается по шкале прибора.
Твердость по Виккерсу HV определяется вдавливанием алмазной стандартной правильной четырехгранной пирамиды. Определение числа твердости производится путем измерения длины диагоналей (среднее арифметическое суммы двух диагоналей) и пересчета по формуле
Стандартными нагрузками в зависимости от толщины образца приняты 5, 10, 20, 30, 50 и 100 кгс. Выдержка времени под нагрузкой берется для черных металлов 10-15 секунд, для цветных - 28-32. Соответственно символ HV 10/30-500 означает: 500 - число твердости; 10 - нагрузку и 30 - время выдержки.
Метод Виккерса применяется для измерений твердости деталей малых сечений и твердых тонких поверхностных слоев цементированных, азотированных или цианированных изделий.

49.Вторичная кристаллизация металлов Вторичная кристаллизация имеет большое практическое значение и служит основой для ряда процессов термической обработки, старения и т. д., значительно изменяющих и улучшающих свойства сплавов. Большинство процессов вторичной кристаллизации связано с диффузией. Диффузия в твердых сплавах возможна по ряду причин. В частности, в растворах замещения она протекает бла-годаря наличию незаполненных узлов (вакансий) в решетках. Перемещаться могут как атомы растворителя, так и атомы растворенного вещества. При образовании растворов внедрения перемещение растворенных атомов происходит через междоузлия решеток.Диффузия протекает тем быстрее, чем больше разность концентр;.в п выше температура.I (од к о а г у л я ц и е й понимают рост крупных кристаллов за счет мелких; под с ф е р о и д и з а ц и е й - превращение вытянутых кристаллов в округленные. Оба процесса протекают вследствие стремления системы к уменьшению свободной энергии. В данном случае ЭТО достигается потому, что отношения суммы

поверхностей зерен к их объемам становятся меньше. Коагуляция и сфероидизация протекают тем легче, чем выше температура. На рис. 41 представлена диаграмма состояния сплава, в котором растворимость второго компонента в твердом растворе уменьшается. На этой диаграмме (в отличие от диаграммы рис. 39) появляется линия EQ, характеризующая выделение избыточных кристаллов компонента В, которые называются вторичными (В2), в отличие от первичных кристаллов (В\), которые выделяются по линии CD. Для примера рассмотрим ход образования вторичных кристаллов при охлаждении твердых растворов а с концентрацией К. При температуре t\ структура однофазна, при достижении линии EQ раствор становится насыщенным и по мере дальнейшего охлаждения из него выделяется избыточная фаза В2, последняя может выделяться по границам кристаллов а и принимать вид сетки. Здесь также сначала происходит образование зародышей и затем их рост Однако место появления зародышей и их рост заранее определено поверхностями первичных зерен. Иногда расположение вторичной фазы в виде сетки нежелательно, тогда или предупреждают ее образован не, или устраняют. Устраняют сетку по-разному, например, сфероидизирую-щим отжигом. Кристаллизация по диаграмме (рис. 41) дает возможность значительно изменять свойства сплава путем закалки и отпуска или путем старения.

50.ДС сплавов с неограниченной растворимостью компонентов Оба компонента неограниченно растворимы в жидком и твердом состояниях ине образуют химических соединений.

Компоненты: А, В.

Фазы: L, α.

Если два компонента неограниченно растворяются в жидком и твердом состояниях, то возможно существование только двух фаз - жидкого раствора Lи твердого раствора α. Следовательно, трех фаз быть не может, кристаллизация при постоянной температуре не наблюдается и горизонтальной линии на диаграмме нет.

Диаграмма, изображенная на рис. 1, состоит из трех областей: жидкость, жидкость + твердый раствор и твердый раствор.

Линия АmВ является линией ликвидус, а линия АnВ - линией солидус. Процесскристаллизации изображается кривой охлаждениясплава (рис. 2).

Точка 1 соответствует началу кристаллизации , точка 2 - концу. Между точками 1 и 2 (т. е. между линиямиликвидус и солидус) сплав находится в двухфазном состоянии. При двух компонентах и двух фазах система моновариантна (с = k-f+1 = 2 - 2 + 1 = 1), т. е. если изменяется температура, то изменяется и концентрациякомпонентов в фазах; каждой температуре соответствуют строго определенные составы фаз. концентрация и количество фаз у сплава , лежащего между линиямисолидус и ликвидус, определяются правилом отрезков. Так, сплав К в точке а состоит из жидкой и твердой фаз. Состав жидкой фазы определится проекцией точки b, лежащей на линии ликвидус, а Состав твердой фазы - проекцией точки с, лежащей на линии солидус. Количество жидкой и твердой фаз определяется из следующих соотношений: количество жидкой фазы ac/bc, количество твердой фазы ba/bc.

Во всем интервалекристаллизации (от точки 1до точки 2) из жидкого сплава ,

имеющего исходную концентрацию К,выделяются кристаллы, более богатые тугоплавким компонентом. Состав первых кристаллов определится проекцией s. Закончиться кристаллизациясплава К должна в точке 2, когда последняя капля жидкости, имеющая Состав l, затвердеет. Отрезок, показывающий количество твердой фазы, равнялся нулю в точке /, когда только началась кристаллизация , и количеству всего сплава в точке 2, когда кристаллизация закончилась. Состав жидкости изменяется по кривой 1 - l, а Составкристаллов - по кривой s - 2, и в момент окончания кристаллизацииСоставкристаллов такой же, как и Состав исходной жидкости.

51.Температурные свойства материалов Для материалов вводят несколько характерных температурных точек, указывающих работоспособность и поведение материалов при изменении температуры. Нагревостойкость - максимальная температура, при которой не уменьшается срок службы материала. По этому параметру все материалы разделены на классы нагревостойкости.

Теплостойкость - температура, при которой происходит ухудшение характеристик при кратковременном ее достижении.
Термостойкость
- температура, при которой происходят химические изменения материала.
Морозостойкость
- способность работать при пониженных температурах (этот параметр важен для резин).
Горючесть
- способность к воспламенению, поддержанию огня, самовоспламенению Это различные степени горючести. Все эти понятия определяют характерные температуры, при которых меняется какое-либо свойство материала. Есть некоторые температуры, характерные для всех материалов, есть температуры, специфичные для некоторых электротехнических материалов. при которых резко меняются какие-либо характеристики. Большинству материалов присущи точки плавления, кипения. Точка плавления - температура, при которой происходит переход из твердого состояния в жидкое. Не обладает точкой плавления жидкий гелий, он даже при нуле Кельвина остается жидким. К наиболее тугоплавким можно отнести вольфрам - 3387 °С, молибден 2622 °С, рений - 3180 °С, тантал - 3000°С. Есть тугоплавкие вещества среди керамик: карбид гафния HfC и карбид тантала TaC имеют точки плавления 2880 °С., нитрид и карбид титана - более 3000 °С. Есть материалы, в основном это термопластичные полимеры, которые обладают точкой размягчения, но до плавления дело не доходит, т.к. начинается разрушение полимерных молекул при повышенных температурах. У термореактивных полимеров даже до размягчения дело не доходит, материал раньше начинает разлагаться. Есть сплавы и другие сложные вещества у которых сложный процесс плавления: при некоторой температуре, называемой «солидус» происходит частичное расплавление, т.е. переход части вещества в жидкое состояние. Остальное вещество находится в твердом состоянии. Получается что-то типа кашицы. По мере повышения температуры все большая часть переходит в жидкое состояние, наконец при некоторой температуре, называемой «ликвидус» произойдет полное расплавление вещества. Например сплав олова и свинца для пайки, называемый попросту «припой», начинает плавиться примерно при 180 °С (точка солидус), а расплавляется примерно при 230 °С (точка ликвидус).

В любых процессах плавления, достижение определенной точки является необходимым, но недостаточным условием плавления. Для того, чтобы расплавить вещество нужно сообщить ему энергию, которая называется теплотой плавления. Она рассчитывается на один грамм (или на одну молекулу). Точка кипения - температура, при которой происходит переход из жидкого состояния в парообразное. Кипят практически все простые вещества, не кипят сложные органические соединения, они разлагаются при более низких температурах, не доходя до кипения. На точку кипения оказывает значительное влияние давление. Так, например для воды можно сдвинуть точку кипения от 100 °С до 373°С приложением давления в 225 атм. Кипение растворов, т.е. взаимно растворимых друг в друге веществ происходит сложным образом, кипят сразу два компонента, только в паре одного вещества больше, чем другого. Например слабый раствор спирта в воде выкипает так, что в паре спирта больше чем в воде. За счет этого работает перегонка и после конденсации пара получается спирт, но обогащенный водой. Есть смеси выкипающие одновременно, например 96% спирт. Здесь при кипении состав жидкости и состав пара одинаковы. После конденсации пара получается спирт точно такого же состава. Такие смеси называются азеотропными . Есть температуры специфичные для электротехнических материалов. Например для сегнетоэлектриков вводят т.н. точку Кюри . Оказывается, что сегнетоэлектрическое состояние вещества возникает только при пониженных температурах. Существует такая температура для каждого сегнетоэлектрика, выше которой домены не могут существовать и он превращается в параэлектрик. Такая температура называется точкой Кюри. Диэлектрическая проницаемость ниже точки Кюри велика, она слабо нарастает по мере подхода к точке Кюри. После достижения этой точки диэлектрическая проницаемость резко падает. Например, для наиболее распространенного сегнетоэлектрика: титаната бария, точка Кюри 120 °С, для цирконат-титаната свинца 270 °С, для некоторых органических сегнетоэлектриков температура Кюри отрицательна. Аналогичная температура (и тоже называется точка Кюри) имеется для ферромагнетиков. Поведение магнитной проницаемости подобно поведению диэлектрической проницаемости по мере повышения температуры и подхода к точке Кюри. Единственное отличие - падение магнитной проницаемости с ростом температуры происходит более резко после достижения точки Кюри. Значения точки Кюри для некоторых материалов: железо 770 °С, кобальт 1330°С, эрбий и гольмий (-253°С), керамика - в широком диапазоне температур. Для антиферромагнетиков аналогичная точка называется точкой Нееля .


Похожая информация.


Критерии выбора материала

Свойства – это количественная или качественная характеристика материала, определяющая его общность или различие с другими материалами.
Выделяют три основные группы свойств: эксплуатационные, технологические и стоимостные, которые лежат в основе выбора материала и определяют техническую и экономическую целесообразность его применения. Первостепенное значение имеют эксплуатационные свойства.
Эксплуатационными называют свойства материала, которые определяют работоспособность деталей машин, приборов и инструментов, их силовые, скоростные, стоимостные и другие технико-эксплуатационные показатели.
Работоспособность подавляющего большинства деталей машин и изделий обеспечивает уровень механических свойств, которые характеризуют поведение материала под действием внешней нагрузки. Так как условия нагружения деталей машин разнообразны, то механические свойства включают большую группу показателей.
В зависимости от изменения во времени нагрузки подразделяют на статические и динамические. Статическое нагружение характеризуется малой скоростью изменения своей величины, а динамические нагрузки изменяются во времени с большими скоростями, например, при ударном нагружении. Кроме того, нагрузки подразделяют на растягивающие, сжимающие, изгибающие, скручивающие и срезывающие. Изменение нагрузки может иметь периодически повторяющийся характер, вследствие чего их называют повторно- переменными или циклическими. В условиях эксплуатации машин воздействие перечисленных нагрузок может проявляться в различных сочетаниях.
Под воздействием внешних нагрузок, а также структурно-фазовых превращений в материале конструкций возникают внутренние силы, которые могут быть выражены через внешние нагрузки. Внутренние силы, приходящиеся на единицу площади поперечного сечения тела, называют напряжениями . Введение понятия напряжений позволяет проводить расчеты на прочность конструкций и их элементов.
В простейшем случае осевого растяжения цилиндрического стержня напряжение σ опеределяют как отношение растягивающее силы Р к начальной площади поперечного сечения Fo , т.е.

σ = P/Fo

Действие внешних сил приводит к деформации тела, т.е. к изменению его размером и формы. Деформация, исчезающая после разгрузки, называется упругой, а остающаяся в теле – пластической (остаточной).
Работоспособность отдельной группы деталей машин зависит не только от механических свойств, но и от сопротивления воздействию химически активной рабочей среды, если такое воздействие становится значительным, то определяющим становятся физико-химические свойства материала – жаростойкость и коррозионная стойкость.
Жаростойкость характеризует способность материала противостоять химической коррозии в атмосфере сухих газов при высокой температуре. У металлов нагрев сопровождается образованием на поверхности оксидного слоя (окалины).
Коррозионная стойкость – это способность металла противостоять электрохимический коррозии, которая развивается при наличие жидкой среды на поверхности металла и ее электрохимической неоднородности.
Для некоторых деталей машин, важные значение имеют физические свойства, характеризующие поведение материалов в магнитных, электрических и тепловых полях, а также под воздействием потоков высокой энергии или радиации. Их принято подразделять на магнитные, электрические, теплофизические и радиационные.
Способность материала подвергаться различным методам горячей и холодной обработки определяют по технологическим свойствам . К ним относят литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Технологические свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.
К последней группе основных свойств относится стоимость материала, которая оценивает экономичность его использования. Ее количественным показателем является – оптовая цена – стоимость единицы массы материалы в виде слитков, профилей, порошка, штучных и сварных заготовок, по которым завод-изготовитель реализует свою продукцию машиностроительным и приборостроительным предприятиям.

Механические свойства, определяемые при статических нагрузках

Механические свойства характеризуют сопротивление материала деформации, разрушению или особенность его поведения в процессе разрушения. Эта группа свойств включает показатели прочности, жесткости (упругости), пластичности, твердости и вязкости. Основную группу таких показателей составляют стандартные характеристики механических свойств, которые определяют в лабораторных условиях на образцах стандартных размеров. Полученные при таких испытаниях показатели механических свойств оценивают поведение материалов под внешней нагрузкой без учета конструкции детали и условий эксплуатации.
По способу приложения нагрузок различают статические испытания на растяжение, сжатие, изгиб, кручение, сдвиг или срез. Наиболее распространены испытания на растяжения (ГОСТ 1497-84), которые дают возможность определить несколько важных показателей механических свойств.

Испытание на растяжение . При растяжении стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo строят диаграмму растяжения в координатах: нагрузка – удлинение образца (рис.1). На диаграмме выделяют три участка: упругой деформации до нагрузки Рупр .; равномерной пластической деформации от Рупр. до Рmax и сосредоточенной пластической деформации от Рmax до Рк . Прямолинейной участок сохраняется до нагрузки, соответствующей пределу пропорциональности Рпц. Тангенс угла наклона прямолинейного участка характеризует модуль упругости первого рода Е.

Рис. 1. Диаграмма растяжения пластичного металла (а) и диаграммы
условных напряжений пластичного (б) и хрупкого (в) металлов.
Диаграмма истинных напряжений (штриховая линия) дана для сравнения.

Пластическая деформация выше Р упр. идет при возрастающей нагрузке, так как металл в процессе деформирования упрочняется. Упрочнение материала при деформации называется наклепом.

Наклеп металла увеличивается до момента разрыва образца, хотя растягивающая нагрузка при этом уменьшается от Р max до Р к (рис.1, а). Это объясняется появлением в образце местного утонения-шейки, в котором в основном сосредотачивается пластическая деформация. Несмотря на уменьшение нагрузки, растягивающие напряжения в шейке повышается до тех пор, пока образец не разрушится.
При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяются делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент (рис.1,б). Эти напряжения в повседневной практике не определяют, а пользуются условиями напряжениями, считая, что поперечное сечение F o образца остается неизменным.

Напряжения σ упр., σ т, σ в - стандартные характеристики прочности. Каждая получается делением соответствующей нагрузки Р упр. Р т и Р max на начальную площадь поперечного сечения F о .

Пределом упругости σ упр. называют напряжение, при котором пластическая деформация достигает значений 0,005; 0,02 и 0,05%. Соответствующие пределы упругости обозначают σ 0,005, σ 0,02, σ 0,05 .

Условный предел текучести – это напряжение, которому соответствует пластическая деформация равная 0,2%; его обозначают σ 0,2 . Физический предел текучести σ т определяют по диаграмме растяжения, когда на ней имеется площадка текучести. Однако, при испытаниях на растяжение у большинства сплавов нет площадки текучести на диаграммах. Выбранная пластическая деформация 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

Временное сопротивление характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению:

σ в = Р max / F o

Пластичность характеризуется относительным удлинением δ и относительным сужением ψ:

где lk -конечная длина образца; lо и Fo – начальная длина и площадь поперечного сечения образца; Fк – площадь поперечного сечения в месте разрыва.
Для малопластичных материалов испытания на растяжение (рис. 1,в) вызывают значительные затруднения. Такие материалы, как правило, подвергают испытаниям на изгиб.

Испытание на изгиб . При испытании на изгиб в образце возникают как растягивающие, так и сжимающие напряжения. На изгиб испытывают чугуны, инструментальные стали, стали после поверхностного упрочнения и керамику. Определяемыми характеристиками служат предел прочности и стрела прогиба.

Предел прочности при изгибе вычисляют по формуле:

σ и = M / W,

где М – наибольший изгибающий момент; W – момент сопротивления сечения, для образа круглого сечения

W = πd 3 / 32

(где d – диаметр образца), а для образцов прямоугольного сечения W = bh 2 /6 , где b, h – ширина и высота образца).
Испытания на твердость . Под твердостью понимается способность материала сопротивляться внедрению в его поверхность твердого тела – индентора. В качестве индентора используют закаленный стальной шарик или алмазный наконечник в виде конуса или пирамиды. При вдавливании поверхностные слои материала испытывают значительную пластическую деформацию. После снятия нагрузки на поверхности остается отпечаток. Особенность происходящей пластической деформации состоит в том, что вблизи наконечника возникает сложное напряженное состояние, близкое к всестороннему неравномерному сжатию. По этой причине пластическую деформацию испытывают не только пластические, но и хрупкие материалы.
Таким образом, твердость характеризует сопротивление материала пластической деформации. Такое же сопротивление оценивает и временное сопротивление, при определении которого возникает сосредоточенная деформация в области шейки. Поэтому для целого ряда материалов численные значения твердости и временного сопротивления пропорциональны. На практике широко применяют четыре метода измерения твердости: твердость по Бринеллю, твердость по Виккерсу, твердость по Роквеллу и микротвердость.
При определении твердости по Бринеллю (ГОСТ 9012-59) в поверхность образца вдавливают закаленный шарик диаметром 10; 5 или 2,5 мм при действии нагрузки от 5000Н до 30000Н. После снятия нагрузки на поверхности образуется отпечаток в виде сферической лунки диаметром d.
При измерении твердости по Бринеллю используют заранее составленные таблицы, указывающие число твердости НВ В зависимости от диаметра отпечатка и выбранной нагрузки, чем меньше диаметр отпечатка, тем выше твердость.
Способ измерения по Бринеллю используют для сталей с твердостью < 450 НВ, цветных металлов с твердостью < 200 НВ. Для них установлена корреляционная связь между временным сопротивлением (в МПа) и числом твердости НВ:
σ в » 3,4 НВ – для горячекатаных углеродистых сталей;
σ в » 4,5 НВ – для медных сплавов;
σ в » 3,5 НВ – для алюминиевых сплавов.
При стандартном методе измерения по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливают четырехгранную алмазную пирамиду с углом при вершине 139°. Отпечаток получается в виде квадрата, диагональ которого измеряют после снятия нагрузки. Число твердости НV определяют с помощью специальных таблиц по значению диагонали отпечатка при выбранной нагрузке.

Метод Виккерса применяют главным образом для материалов, имеющих высокую твердость, а также для испытания на твердость деталей малых сечений или тонких поверхностных слоев. Как правило, используют небольшие нагрузки: 10,30,50,100,200,500 Н. Чем тоньше сечение детали или исследуемый слой, тем меньше выбирают нагрузку.
Число твердости по Виккерсу и по Бринеллю для материалов, имеющих твердость до 450 НВ, практически совпадают.
Измерение твердости по Роквеллу (ГОСТ 9013-59) наиболее универсален и наименее трудоемок. Число твердости зависит от глубины вдавливания наконечника, в качестве которого используют алмазный конус с углом при вершине 120 0 или стальной шарик диаметром 1,588 мм. Для различных комбинаций нагрузок и наконечников прибор Роквелла имеет три измерительных шкалы: А.В.С. Твердость по Роквеллу обозначают цифрами, определяющими уровень твердости, и буквами HR с указанием шкалы твердости, например: 70HRA, 58HRC, 50HRB. Числа твердости по Роквеллу не имеют точных соотношений с числами твердости по Бринеллю и Виккерсу.
Шкала А (наконечник – алмазный конус, общая нагрузка 600Н). Эту шкалу применяют для особо твердых материалов, для тонких листовых материалов или тонких (0,6-1,0 мм) слоев. Пределы измерения твердости по этой шкале 70-85.
Шкала В (наконечник – стальной шарик, общая нагрузка 1000Н). При этой шкале определяют твердость сравнительно мягких материалов (<400НВ). Пределы измерения твердости 25-100.

Шкала С (наконечник – алмазный конус, общая нагрузка 1500Н). Эту шкалу используют для твердых материалов (> 450НВ), например закаленных сталей. Пределы измерения твердости по этой шкале 20-67. Определение микротвердости (ГОСТ 9450-76) осуществляют вдавливанием в поверхность образца алмазной пирамиды при небольших нагрузках (0,05-5Н) с последующим измерением диагонали отпечатка. Этим методом оценивают твердость отдельных зерен, структурных составляющих, тонких слоев или тонких деталей.

Механические свойства, определяемые при динамических нагрузках

При работе деталей машин возможны динамические нагрузки, при которых многие металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы – концентраторы напряжения. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (рис. 2). Стандартный образец устанавливают на две споры и посредине наносят удар, приводящий к разрушению образца. По шкале маятникова копра определяют работу К , затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость:

КС = К / S 0 1 , [МДж/м 2 ],

где S 0 1 , площадь поперечного сечения образца в месте надреза.


Рис. 2. Схема маятникова копра (а) и испытание на удар (б):
1 – образец; 2 – маятник; 3 – шкала; 4 – стрелка шкалы; 5- тормоз.

В соответствии с ГОСТ 9454-78 предусмотрены испытания образцов трех видов: U-образным (радиус надреза r=1 мм); V-образным (r=0,25 мм) и Т-образным (трещина усталости, созданная в основании надреза. Соответственно ударную вязкость обозначает: КСU, KCV, KCT. Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры. Поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости – температуры или интервала температур, в котором происходит снижение ударной вязкости. Хладноломкость - способность металлического материала терять вязкость, хрупко разрушаться при понижении температуры. Хладноломкость проявляется у железа, стали, металлов и сплавов, имеющих объемно-центрированную кубическую (ОЦК) или гексагональную плотноупакованную (ГП) решетку. Она отсутствует у металлов с гранецентрированной кубической (ГЦК) решеткой.

Механические свойства, определяемые при переменных циклических нагрузках

Многие детали машин (валы, шатуны, зубчатые колеса) испытывают во время работы повторяющиеся циклические нагружения. Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталости – выносливостью (ГОСТ 23207-78). О способности материалы работать в условиях циклического нагружения судят по результатам испытаний образцов на усталость (ГОСТ 25.502-79). Их проводят на специальных машинах, создающих в образцах многократное нагружение (растяжение – сжатие, изгиб, кручение). Образцы испытывают последовательно на разных уровнях напряжений, определяя число циклов до разрушения. Результаты испытаний изображают в виде кривой усталости, которая строится в координатах: максимальное напряжение цикла σ max / или σ в ) – число циклов. Кривые усталости позволяют определять следующие критерии выносливости:

- циклическую прочность , которая характеризует несущую способность материала, т.е. то наибольшее напряжение, которое он способен выдержать за определенное время работы.- циклическую долговечность – число циклов (или эксплуатационных часов), которые выдерживает материал до образования усталостной трещины определенной протяженности или до усталостного разрушения при заданном напряжении.

Кроме определения рассмотренных критериев многоцикловой выносливости, для некоторых специальных случаев применяют испытания на малоцикловую усталость . Их проводят при высоких напряжениях (выше σ 0,2 ) и малой частоте нагружения (обычно не более 6 ГЦ). Эти испытания имитируют условия работы конструкций (например, самолетных), которые воспринимают редкие, но значительные циклические нагрузки.

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность - способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность - способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость - способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки - 500 . . . 600 НВ.

Ударная вязкость - способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см 2 или кгс м/см), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость - способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм 2), который равен отношению напряжения а к вызванной им упругой деформации . Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Механические свойства металлов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений , дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Чтобы оценить эксплуатационные свойства изделий и определить физические и механические характеристики материалов, используются различные инструкции, ГОСТы и другие регламентирующие и рекомендательные документы. Рекомендуются и методы испытаний на разрушение целой серии изделий или однотипных образцов материала. Это не слишком экономичный метод, но эффективный.

Определение характеристик

Основные характеристики механических свойств материалов следующие.

1. Временное сопротивление или предел прочности - та сила напряжения, которая зафиксирована при наибольшей нагрузке перед разрушением образца. Механические характеристики прочности и пластичности материалов описывают свойства твёрдых тел сопротивляться необратимым изменениям формы и разрушению под влиянием внешних нагрузок.

2. Условным называется напряжение, когда остаточная деформация достигнет 0,2% длины образца. Это наименьшее напряжение в то время, как образец продолжает деформироваться без заметного увеличения нагрузок.

3. Пределом длительной прочности называют наибольшее напряжение, при данной температуре вызывающее в течение определённого времени разрушение образца. Определение механических характеристик материалов ориентируется на предельные единицы длительной прочности - разрушение происходит при 7 000 градусах по Цельсию за 100 часов.

4. Условным пределом ползучести называется напряжение, вызывающее при данной температуре за определённое время в образце заданное удлинение, а также скорость ползучести. Пределом считается деформация металла за 100 часов при 7 000 градусах по Цельсию на 0,2%. Ползучестью называется определённая скорость деформации металлов при постоянном нагружении и высокой температуре в течение длительного времени. Жаропрочность - это сопротивление материала разрушению и ползучести.

5. Пределом выносливости называют наибольшее значение напряжения цикла, когда усталостного разрушения не происходит. Число циклов нагружения может быть заданное или произвольное, в зависимости от того, как запланированы механические испытания материалов. Механические характеристики включают в себя усталость и выносливость материала. Под действием нагрузок в цикле накапливаются повреждения, образуются трещины, приводящие к разрушению. Это усталость. А свойство сопротивления усталости - выносливость.

Растяжение и сжатие

Материалы, которые применяются в инженерной практике, разделяются на две группы. Первая - пластичные, для разрушения которых должны появиться значительные остаточные деформации, вторая - хрупкие, разрушающиеся при очень малых деформациях. Естественно, такое деление весьма условно, потому что каждый материал в зависимости от создаваемых условий может повести себя и как хрупкий, и как пластичный. Это зависит от характера состояния напряжения, от температуры, от скорости деформирования и других факторов.

Механические характеристики материалов при растяжении и сжатии красноречивы и у пластичных, и у хрупких. Например, малоуглеродистую сталь испытывают растяжением, а чугун - сжатием. Чугун - хрупкий, сталь - пластична. Хрупкие материалы имеют большую сопротивляемость при сжатии, при деформации растяжения - хуже. Пластичные имеют примерно одинаковые механические характеристики материалов при сжатии и растяжении. Однако определяется их порог всё-таки растяжением. Именно этими способами можно более точно узнать механические характеристики материалов. Диаграмма растяжения и сжатия представлена в иллюстрациях к данной статье.

Хрупкость и пластичность

Что же такое пластичность и хрупкость? Первое - это способность не разрушаться, получая остаточные деформации в больших количествах. Такое свойство является решающим для важнейших технологических операций. Изгиб, волочение, вытяжка, штамповка и многие другие операции зависят от характеристик пластичности. К пластичным материалам относятся отожжённая медь, латунь, алюминий, малоуглеродистая сталь, золото и тому подобные. Гораздо менее пластичны бронза и дюраль. Совсем слабо пластичны почти все легированные стали.

Характеристики прочности пластичных материалов сопоставляют с пределом текучести, о котором будет сказано ниже. На свойства хрупкости и пластичности большое влияние оказывают температура и скорость нагружения. Быстрое натяжение придаёт материалу хрупкость, а медленное - пластичность. Например, стекло - материал хрупкий, но оно выдерживает длительное воздействие нагрузки, если температура нормальная, то есть показывает свойства пластичности. А пластична, однако при ударной резкой нагрузке проявляется как материал хрупкий.

Метод колебаний

Физико-механические характеристики материалов определяются возбуждением продольных, изгибных, крутильных и других, ещё более сложных а зависимости от размеров образцов, форм, типов приёмника и возбудителя, способов крепления и схем приложения динамических нагрузок. Крупногабаритные изделия тоже подлежат испытаниям с помощью данного метода, если существенно изменить методику применения в способах приложения нагрузки, возбуждения колебаний и регистрации их. Этим же методом определяются механические характеристики материалов, когда нужно оценить жёсткость крупногабаритных конструкций. Однако при локальном определении в изделии характеристик материала этот способ не используется. Практическое применение методики возможно только тогда, когда известны геометрические размеры и плотность, когда возможно закрепление изделия на опорах, а на самом изделии - преобразователей, нужны определённые температурные условия и т.д.

Например, при смене температурных режимов происходит то или иное изменение, механические характеристики материалов при нагревании становятся другими. Практически все тела в этих условиях расширяются, что влияет на их структуру. Любое тело имеет те или иные механические характеристики материалов, из которых оно состоит. Если по всем направлениям эти характеристики не изменяются и остаются одинаковыми, такое тело называют изотропным. Если же физико-механические характеристики материалов изменяются - анизотропным. Последнее является характерной чертой практически всех материалов, просто в разной степени. Но есть, например, стали, где анизотропность весьма незначительна. Наиболее ярко она выражена в таких естественных материалах, как дерево. В производственных условиях определяют механические характеристики материалов посредством контроля качества, где используются различные ГОСТЫ. Оценка неоднородности получается из статистической обработки, когда суммируются результаты испытаний. Образцы должны быть многочисленными и вырезанными из конкретной конструкции. Такой способ получения технологических характеристик считается довольно трудоёмким.

Акустический метод

Акустических методов для того, чтобы определить механические свойства материалов и их характеристики, достаточно много, и все они отличаются способами ввода, приёма и регистрации колебаний в синусоидальном и импульсном режимах. Используются акустические методы при исследовании, например, строительных материалов, их толщины и напряжённости состояния, при дефектоскопии. Механические характеристики конструкционных материалов также определяются с помощью акустических методов. Сейчас уже разрабатываются и серийно выпускаются многочисленные разнообразные электронные акустические приборы, которые позволяют регистрировать упругие волны, параметры их распространения как в синусоидальном, так и в импульсном режиме. На их основе определяются механические характеристики прочности материалов. Если используются упругие колебания малой интенсивности, этот метод становится абсолютно безопасным.

Недостатком акустического метода является необходимость акустического контакта, который далеко не всегда возможен. Поэтому работы эти не слишком производительны, если нужно срочно получить механические характеристики прочности материалов. Огромное влияние на результат оказывает состояние поверхности, геометрические формы и размеры исследуемого изделия, а также среда, где проводятся испытания. Чтобы преодолеть эти сложности, конкретную задачу нужно решать строго определённым акустическим методом или, напротив, использовать их сразу несколько, это зависит от конкретной ситуации. Например, стеклопластики хорошо поддаются такому исследованию, поскольку хорошая скорость распространения упругих волн, а потому широко используется сквозное прозвучивание, когда приёмник и излучатель располагаются на противоположных поверхностях образца.

Дефектоскопия

Методы дефектоскопии применяются для контроля за качеством материалов в различных областях промышленности. Бывают неразрушающие и разрушающие методы. К неразрушающим относятся следующие.

1. Для определения трещин на поверхностях и непроваров применяется магнитная дефектоскопия . Участки, которые имеют такие дефекты, характеризуются полями рассеивания. Обнаружить их можно специальными приборами или же просто наложить слой магнитного порошка на всю поверхность. На местах дефектов расположение порошка будет меняться уже при наложении.

2. Дефектоскопия проводится и с помощью ультразвука . Направленный луч будет по-разному отражаться (рассеиваться), если даже глубоко внутри образца имеются какие-нибудь несплошности.

3. Дефекты в материале хорошо показывает радиационный метод исследования , основанный на разнице в поглощении излучения средой различной плотности. Используется гамма-дефектоскопия и рентген.

4. Химическая дефектоскопия. Если поверхность протравить слабым раствором азотной, соляной кислоты или их смесью (царская водка), то в местах, где есть дефекты, проявляется сеточка в виде чёрных полосок. Можно применить метод, при котором снимаются серные отпечатки. В местах, где материал неоднороден, сера должна менять цвет.

Разрушающие методы

Разрушающие методы здесь уже частично разобраны. Образцы испытывают на изгиб, сжатие, растяжение, то есть применяются статические разрушающие методы. Если же изделие испытывают переменными циклическими нагрузками на ударный изгиб - определяются динамические свойства. Макроскопические методы рисуют общую картину строения материала и в больших объёмах. Для такого исследования нужны специально шлифованные образцы, которые подвергаются травлению. Так, можно выявить форму и расположение зёрен, например, в стали, наличие кристаллов с деформацией, волокона, раковины, пузыри, трещины и прочие неоднородности сплава.

Микроскопическими методами изучается микроструктура и выявляются мельчайшие пороки. Образцы таким же образом предварительно шлифуют, полируют и потом подвергают травлению. Дальнейшее испытание предполагает использование электрических и оптических микроскопов и рентгеноструктурного анализа. Основой этого метода служит интерференция лучей, которые рассеиваются атомами вещества. Контролируется характеристика материала с помощью анализа рентгенограммы. Механические характеристики материалов определяют их прочность, что является главным для построения конструкций надёжных и безопасных в эксплуатации. Поэтому материал проверяется тщательно и разными методами во всех состояниях, какие он способен принять, не потеряв высокий уровень механических характеристик.

Методы контроля

Для проведения неразрушающего контроля за характеристиками материалов большое значение имеет правильный выбор эффективных методов. Наиболее точны и интересны в этом плане методы дефектоскопии - контроль дефектов. Здесь необходимо знать и понимать различия между способами реализации методов дефектоскопии и методов определения физико-механических характеристик, поскольку они принципиально отличаются друг от друга. Если последние основываются на контроле физических параметров и последующей их корреляции с механическими характеристиками материала, то дефектоскопия зиждется на прямом преобразовании излучения, которое отражается от дефекта или проходит контролируемую среду.

Лучше всего, конечно, контроль комплексный. Комплексность заключается в определении оптимальных физических параметров, по которым можно выявить прочностные и прочие физико-механические характеристики образца. А также одновременно разрабатывается и затем осуществляется оптимальный комплекс средств контроля над дефектами структуры. И, наконец, появляется интегральная оценка данного материала: определяется его работоспособность по целому комплексу параметров, которые помогли определить неразрушающие методы.

Механические испытания

С помощью таких испытаний проверяются и оцениваются механические свойства материалов. Этот вид контроля появился очень давно, но до сих пор не потерял своей актуальности. Даже современные высокотехнологичные материалы потребители достаточно часто и ожесточённо критикуют. А это говорит о том, что экспертизы должны проводиться тщательнее. Как уже было сказано, механические испытания можно подразделить на два вида: статические и динамические. Первые проверяют изделие или образец на кручение, растяжение, сжатие, изгиб, а вторые - на твёрдость и на ударную вязкость. Современное оборудование помогает выполнять эти не слишком простые процедуры качественно и выявлять все эксплуатацонные свойства данного материала.

Испытанием на растяжение можно выявить сопротивляемость материала к воздействию приложенного постоянного или возрастающего растягивающего напряжения. Метод старый, испытанный и понятный, используемый очень давно и до сих пор широко. Образец растягивается вдоль по продольной оси посредством приспособления в испытательной машине. Скорость растяжения образца постоянная, нагрузка измеряется специальным датчиком. Одновременно контролируется удлинение, а также соответствие его прилагаемой нагрузке. Результаты таких испытаний чрезвычайно полезны, если нужно содавать новые конструкции, поскольку пока никто не знает, как они себя поведут под нагрузкой. Подсказать может только выявление всех параметров упругости материала. Максимальное напряжение - предел текучести выносит определение максимальной нагрузки, которую данный материал может выдержать. Это поможет вычислить запас прочности.

Испытание твёрдости

Жёсткость материала рассчитывается по Сочетание текучести и твёрдости помогает определить упругость материала. Если в технологическом процессе присутствуют такие операции, как протяжка, прокатка, прессование, то величину возможной пластической деформации знать просто необходимо. При высокой пластичности материал сможет принять любую форму при соответствующей нагрузке. Методом выявления запаса прочности может служить также и испытание на сжатие. Особенно если материал является хрупким.

Твёрдость испытывают с помощью идентора, который выполнен из гораздо более твёрдого материала. Чаще всего проводится по методу Бринеля (вдавливается шарик), Виккерса (идентер в форме пирамидки) или Роквелла (используется конус). В поверхность материала вдавливается идентор с определённой силой в определённый период времени, а потом изучается оставшийся на образце отпечаток. Есть и другие достаточно широко применяемые испытания: на ударную прочность, например, когда оценивается сопротивление материала в момент приложения нагрузки.

Поделиться: